Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.

نویسندگان

  • Y D Kuang
  • L Lindsay
  • S Q Shi
  • G P Zheng
چکیده

Based on first principles calculations and self-consistent solution of the linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene with tensile strain, i.e., divergent k with increasing system size; however, the intrinsic room temperature k for unstrained silicene converges with system size to 19.34 W m(-1) K(-1) at 178 nm. The room temperature k of strained silicene becomes as large as that of bulk silicon at 84 μm, indicating the possibility of using strain in silicene to manipulate k for thermal management. The relative contribution to the intrinsic k from out-of-plane acoustic modes is largest for unstrained silicene, ∼39% at room temperature. The single mode relaxation time approximation, which works reasonably well for bulk silicon, fails to appropriately describe phonon thermal transport in silicene, germanene and stanene within the temperature range considered. For large samples of silicene, k increases with tensile strain, peaks at ∼7% strain and then decreases with further strain. In germanene and stanene, increasing strain hardens and stabilizes long wavelength out-of-plane acoustic phonons, and leads to similar k behaviors to those of silicene. These findings further our understanding of phonon dynamics in group-IV buckled monolayers and may guide transfer and fabrication techniques for these freestanding samples and engineering of k by size and strain for applications of thermal management and thermoelectricity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation

Silicene, germanene and stanene likely to graphene are atomic thick material with interesting properties. We employed first-principles density functional theory (DFT) calculations to investigate and compare the interaction of Na or Li ions on these films. We first identified the most stable binding sites and their corresponding binding energies for a single Na or Li adatom on the considered mem...

متن کامل

Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.

It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unb...

متن کامل

Diffusive nature of thermal transport in stanene.

Using the phonon Boltzmann transport formalism and density functional theory based calculations, we show that stanene has a low thermal conductivity. For a sample size of 1 × 1 μm(2) (L × W), the lattice thermal conductivities along the zigzag and armchair directions are 10.83 W m(-1) K(-1) and 9.2 W m(-1) K(-1) respectively, at room temperature, indicating anisotropy in thermal transport. The ...

متن کامل

Electrically tunable magnetoplasmons in a monolayer of silicene or germanene.

We theoretically study electrically tunable magnetoplasmons in a monolayer of silicene or germanene. We derive the dynamical response function and take into account the effects of strong spin-orbit coupling (SOC) and of an external electric filed E(z) perpendicular to the plane of the buckled silicene/germanene. Employing the random-phase approximation we analyze the magnetoplasmon spectrum. Th...

متن کامل

Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices

Superlattice provides a new approach to enrich the class of materials with novel properties. Here, we report the structural and electronic properties of superlattices made with alternate stacking of two-dimensional hexagonal germanene (or silicene) and a MoS2 monolayer using the first principles approach. The results are compared with those of graphene/MoS2 superlattice. The distortions of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2016